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ABSTRACT

This report studies the antenna synthesis characteristics of linear phased ar-
rays for both the broadside and endfire cases. The underlying technique is
based on a modification of the conventional Dolph-Chebyshev side lobe ta-
pering technique. Some of the parameters that are paramount in the design
of these arrays are analysed, such as the number of elements N , the phase
factor, side lobe levels, directivity, radiation pattern, element separation and
impact upon SNR. The results are compared and the optimised configuration
is investigated for each case.
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Phased Array Analysis Using a Modified Chebyshev
Approach

EXECUTIVE SUMMARY

The work presented in this report is partially aimed towards the Microwave Radar Branch’s
MIcrowave RAdar Test Environment (MIRATE) project which has the objectives of al-
lowing microwave radar researchers and engineers to build skills and first hand knowledge
of phased array radars and to generally foster R & D that ultimately will be used for the
analysis of more complex phased array radar systems such as the one anticipated to go into
the new Air Warfare Destroyer (Project SEA 4000). Specifically, one component under
MIRATE is the construction of an operational experimental phased array radar (XPAR),
which as a first step, comprises the development of a 16-element linear array. This report
presents theoretical results that can be tested experimentally by the XPAR program and it
is hoped that other methods and techniques will be studied and implemented throughout
various stages of XPAR.

The approach here is to consider an arbitrary number of linear arrays and study the var-
ious design specifications that might surface for such a system using a method based on
conventional Dolph-Chebyshev tapering techniques. By using a modified Chebyshev ap-
proach (MC) we investigate amongst other things the side lobe level, directivity, radiation
pattern, element spacing, relation to the number of elements and so on. The MC method
has superior convergence properties for large arrays given that the window coefficients
of the radiation pattern can be determined via the use of matrix algebra. At the same
time this avoids the use of complicated polynomial equations that are computationally
intense. Results presented are for both broadside and endfire arrays and comparison
shows interesting behaviour depending on the selection of either an even or odd number
of elements.
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1 Introduction

In this report we will consider an analysis that involves a variation of the technique used
in conventional Chebyshev arrays. A key aspect of Chebyshev arrays is that they produce
equal side lobe levels (SLL) for a given radiation pattern. However, Chebyshev arrays
suffer from directivity saturation when the number of radiating elements becomes large
[1]. Thus there is a need to find a method to analyse large Chebyshev arrays in an efficient
manner. Furthermore, the synthesis of the radiation pattern is difficult because for every
radiation pattern a new complicated polynomial series needs to be found. It is of no
surprise that researchers have been looking for alternatives in order to overcome these
inefficiencies [2]. What we shall call the Modified Chebyshev (MC) method, is a technique
that is based on the synthesis of arrays using the zeros of conventional Chebyshev arrays
repeatedly, see for example [3]. More specifically, the idea behind the MC formulation is
that it makes no direct use of Chebyshev polynomials. The array factor is calculated in
terms of cosine and hyperbolic cosine functions respectively, while a system of equations
for the excitation amplitudes is obtained from the zeros of the array factor. The solution
of the system of equations for the excitation amplitudes is done by allowing one of those
excitation amplitudes to be the independent variable, as we shall see later. The procedure
allows for the solution of any number of radiating elements N , for both an even or odd
configuration of arrays respectively. Lee [4] has used the zeros of the array factor before in
order to study a different formulation of Chebyshev arrays, however the method still uses
a polynomial representation for the array factor, which does not generalise and becomes
mathematically involved when we consider a large number of elements or large arrays.
The problem of beam synthesis for example, involving an unknown number of elements
but specified SLL and beamwidth, is tackled traditionally by determining the minimum
number of elements that are required to meet the design parameters through a trial and
error process. In what follows, we will examine a process that allows the minimum number
of elements to be obtained in a single step without resorting to an iterative process, hence
giving a more flexible and efficient design strategy. Furthermore we assume that among
the SLL, half-power beamwidth, and number of elements, two quantities are specified and
the third quantity as well as the excitation amplitudes 1 are sought. In addition, we will
also consider both broadside and endfire arrays as well as the optimum spacing between
the radiating elements.

2 The Array Factor

We consider a linear array of N equally spaced elements with uniform excitations and
symmetrical distributions for the magnitude amplitudes in the array, as well as a constant
inter-element phase shift α of radiating electromagnetic waves at angle θ from the plane
of the array-refer to Figure 1. For an even and odd number of elements we can express
the array factor as,

1These are obtained relative to the amplitude of one element that is taken as the independent variable

1
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Figure 1: Linear array with elements radiating at angle θ and phase-shift α. The inter-
element separation is d.

f(ψ) = 2
n∑

m=1
am cos

[(
m− 1

2

)
ψ
]

;N = 2n, (1)

and
f(ψ) = a0 + 2

n∑
m=1

am cos [mψ] ; N = 2n+ 1, (2)

where ψ = βd cos(θ) + α, β = 2π/λ; λ is the wavelength, d is the element spacing, α is
the phase factor, θ is the angle measured from the line of the array, am is the magnitude
of the amplitude for the mth element on either side of the array midpoint and a0 denotes
the amplitude of the centre element when N is odd. Given the fact that Chebyshev
polynomials satisfy the relationships Tn(cos x) = cos(nx) for |Tn| < 1 and Tn cos(hx) =
cosh(nx) for Tn ≥ 1, the array factor in (1) or (2) is written as

|f(ψ)| =
∣∣f(ψ̄)

∣∣ =




C
∣∣∣cos

[(
(N−1)

2 ψ̄
)]∣∣∣

C cosh
[(

(N−1)
2 ψ̄

)] ;
|f(ψ)| ≤ C
|f(ψ)| ≥ C,

(3)

where C is a positive constant coefficient and ψ is related to ψ̄ by

γ cos
(
ψ
2

)
=





cos
(
ψ̄
2

)

cosh
(
ψ̄
2

) ;
|f(ψ)| ≤ C
|f(ψ)| ≥ C.

(4)

In (4) we note that γ is a real coefficient that can be determined when the design specifica-
tions are considered. By close examination of (3), we find that f(ψ) assumes its maximum
value when ψ̄ = 0. Moreover, this corresponds to ψ̄ ≡ ψ̄0 = 2 cosh−1(γ). In most cases
of interest, we can assume a knowledge of the number of radiating elements N and the
maximum-to-side lobe level ratio R 2 . Since we assume that the side lobes have the same
magnitude (see (3)), we can write down the ratio R as

R = cosh
[(

(N − 1)
2

ψ̄0

)]
= cosh

[
(N − 1) cosh−1(γ)

]
. (5)

By transposing (5) and solving for γ we obtain:

γ = cosh
[

1
(N − 1)

loge(R +
√
R2 − 1)

]
. (6)

2The side lobe level here is: −20log10(R) in dB.

2
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Figure 2: (i) For an even number of elements N , the amplitude distributions are obtained
by normalising all other amplitudes by the edge element an. The calculations in Tables
1-2 refer to this configuration for even N , where the symmetry point is taken to be at a
distance of d/2 from the element with amplitude a1. (ii) the same as before except we now
consider an odd number of elements N with the symmetry occuring at the element with
amplitude a0 at a distance of d from a1.

We are now in a position to calculate γ when we know N and the half-power beamwidth
HPBW or alternatively we can do the same if we know R and the HPBW as we shall see
later. Finally, if we require the array factor to be normalised to unity, we can determine
the coefficient C = 1/R.

2.1 The Excitation Amplitudes

A system of equations that govern the magnitude of the radiating elements can be con-
structed from the zeros of the array factor in terms of matrices. These zeros are so-
lutions of cos[(N − 1)ψ̄/2] = 0, and when rearranging for ψ̄ we obtain the solutions
ψ̄ = [(4m ± 1)π]/(N − 1), with m being an integer. The fact that the array factor is
symmetrical about ψ̄ = π allows us to consider only the zeros in the range 0 < ψ̄ < π-see
Figure 2 for the distribution of the elements. The zeros are now obtained from,

ψ̄m =
(2m− 1)π
N − 1

, (7)

for m = 1, 2, 3, ...,M , while M = (N − 2)/2 for N even and M = (N − 1)/2 for N odd
number of radiating elements respectively. More explicitly we obtain the zeros in terms of
ψ by

ψm = 2 cos−1
[
1
γ

cos
(

(2m− 1)π
2(N − 1)

)]
, (8)

3
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Table 1: Amplitude magnitudes for equally spaced Modified Chebyshev arrays. Note that
the amplitudes of the edge elements are always unity and all other amplitudes are nor-
malised by the former, see Figure 2. The Table below shows values such that the first row
corresponds to a1 (even) or a0 (odd), the second row corresponds to a2,...., an−1, an = 1.

N |SLL| = −10 dB |SLL| = −20 dB |SLL| = −30 dB |SLL| = −40 dB
3 1.0390 1.6364 1.8774 1.9604

1 1 1 1
4 0.8794 1.7357 2.3309 2.6688

1 1 1 1
5 0.7975 1.9319 3.1397 4.1448

0.7248 1.6085 2.4123 3.0131
1 1 1 1

6 0.6808 1.8499 3.3828 4.9891
0.6071 1.4369 2.3129 3.0853

1 1 1 1
7 0.6102 1.8387 3.7846 6.2731

0.5864 1.6837 2.3071 5.2678
0.5191 1.2764 2.1507 3.0071

1 1 1 1
8 0.5413 1.7244 3.8136 6.8448

0.5103 1.5091 3.0965 5.1982
0.4519 1.1386 1.9783 2.8605

1 1 1 1
9 0.4923 1.6627 3.9565 7.6989

0.4813 1.5800 3.6516 6.9168
0.4494 1.3503 2.8462 4.9516
0.3995 1.0231 1.8158 2.6901

1 1 1 1
10 0.4463 1.5585 3.8830 7.9837

0.4306 1.4360 3.4095 6.6982
0.4003 1.2125 2.5986 4.6319
0.3576 0.9264 1.6695 2.5182

1 1 1 1
11 0.4113 1.4907 3.8985 8.4813

0.4054 1.4421 3.6982 7.8954
0.3880 1.3036 3.1457 6.3341
0.3601 1.0949 2.3702 4.2952
0.3235 0.8450 1.5400 2.3546

1 1 1 1
12 0.3787 1.4031 3.7865 8.5669

0.3697 1.3277 3.4657 7.5913
0.3521 1.1860 2.8885 5.9124
0.3269 0.9948 2.1659 3.9692
0.2952 0.7759 1.4262 2.2035

1 1 1 1

4
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Table 2: Continued from Table 1. Amplitude magnitudes for equally spaced Modified
Chebyshev arrays. Note that the amplitudes of the edge elements are always unity and all
other amplitudes are normalised by the former, see Figure 2. The Table below shows values
such that the first row corresponds to a1 (even) or a0 (odd), the second row corresponds
to a2,...., an−1, an = 1.

N |SLL| = −10 dB |SLL| = −20 dB |SLL| = −30 dB |SLL| = −40 dB

13 0.3528 1.3408 3.7438 8.8242
0.3492 1.3101 3.6071 8.3860
0.3387 1.2218 3.2208 7.1776
0.3217 1.0830 2.6498 5.4821
0.2990 0.9093 1.9856 3.6660
0.2713 0.7167 1.3261 2.0658

1 1 1 1
14 0.3286 1.2683 3.6224 8.7888

0.3229 1.2189 3.3979 8.0481
0.3119 1.1245 2.9818 6.7204
0.2958 0.9931 2.4335 5.0683
0.2753 0.8358 1.8273 3.3899
0.2510 0.6655 1.2379 1.9409

1 1 1 1
15 0.3086 1.2138 3.5549 8.8944

0.3064 1.1932 3.4582 8.5628
0.2996 1.1330 3.1807 7.6287
0.2885 1.0378 2.7574 6.2585
0.2735 0.9146 2.2401 4.6829
0.2549 0.7724 1.6883 3.1411
0.2335 0.6209 1.1598 1.8281

1 1 1 1

where m = 1, 2, 3, ...,M . We make the observation that the ψm’s are zeros of f(ψ) in (1)
or (2), that is,

f(ψm) = 0, m = 1, 2, 3, ...,M. (9)

In fact (9) gives a system of M equations with M + 1 unknowns. These unknowns to
be solved are the amplitudes of the radiating elements aM , one of which is chosen as the
independent variable. In the case of an even number of elements, the independent variable
is chosen to be aM+1. We can form matrices that allow us to solve for any number of
array elements N . From (1) we have the form

f(ψk) = 2
n∑

m=1

am cos
[(
m− 1

2

)
ψk

]
, (10)

5
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for k = 1, 2, 3, ...,M . The solution of (10) for the amplitudes am can be calculated from
the form

[
a1 a2 · · · aM

]T
= −aM+1

[[
⇀
γ1

⇀
γ2 · · · ⇀

γM

]T ]−1

×
[

cos[(M + 1/2)ψ1] cos[(M + 1/2)ψ2] · · · cos[(M + 1/2)ψM ]
]T , (11)

which can be abbreviated to,

⇀
a
T = −aM+1

[
⇀

A
T
]−1

⇀

C
T
, (12)

where T is the transpose. We will examine (12) and therefore define the matrices
⇀

A,
⇀

C and
the vectors ⇀

γ , by solving (10) via (12) for k = 1, 2. Furthermore, we will consider N = 6
elements for the array, and because we are dealing with an even number of elements we
have M = 2. From this we know that the independent variable we need is given by aM+1

or a3. Expanding (10) we obtain

f(ψ1) = 2a1 cos
(
ψ1

2

)
+ 2a2 cos

(
3ψ1

2

)
+ 2a3 cos

(
5ψ1

2

)
, (13)

and
f(ψ2) = 2a1 cos

(
ψ2

2

)
+ 2a2 cos

(
3ψ2

2

)
+ 2a3 cos

(
5ψ2

2

)
. (14)

Now from (9) we know that the expansions in (13) and (14) are zero, ie,
(
f(ψ1)
f(ψ2)

)
=

(
0
0

)
. (15)

Equating (13) and (14) to zero and transposing the independent amplitude and its coeffi-
cient to one side, it is easy to show that we obtain the matrices:


 cos

(
ψ1

2

)
cos

(
3ψ1

2

)

cos
(
ψ2
2

)
cos

(
3ψ2
2

)





a1

a2


 = −a3


 cos

(
5ψ1

2

)

cos
(

5ψ2
2

)

 . (16)

We recall that a3 in (16) is the independent variable and has been transposed to the right
side. We are of course interested in solving (16) for the amplitudes and so we have



a1

a2


 = −a3


 cos

(
ψ1

2

)
cos

(
3ψ1

2

)

cos
(
ψ2

2

)
cos

(
3ψ2

2

)



−1
 cos

(
5ψ1

2

)

cos
(

5ψ2

2

)

 . (17)

The solutions for a1 and a2 satisfy the array factor (1) or (10), for an even number of
radiating elements N . If we let

⇀
a
T =

[
a1 a2

]T

⇀

C
T

=
[

cos
(

5ψ1
2

)
cos

(
5ψ2

2

) ]T

⇀

A
T

=
[

⇀
γ1

⇀
γ2

]T
(18)

6
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and
⇀
γ1 =

[
cos

(
ψ1
2

)
cos

(
3ψ1
2

) ]

⇀
γ2 =

[
cos

(
ψ2

2

)
cos

(
3ψ2

2

) ] , (19)

we recover (12) for the case k = 1, 2. The procedure we have studied so far means that
we can generalise the results above to any number of radiating elements, and it is easy to
extend to the general form;




a1

a2
...
aM




= −aM+1[
⇀

A
T
]−1




cos[(M + 1
2)ψ1]

cos[(M + 1
2)ψ2]

...
cos[(M + 1

2)ψM ]



, (20)

where the matrix
⇀

A
T

has the general form,

⇀

A
T

=




cos
(
ψ1

2

)
cos

(
3ψ1

2

)
· · · cos

[
(M + 1

2)ψ1

2

]

cos
(
ψ2

2

)
cos

(
3ψ2

2

)
· · · cos

[
(M + 1

2)ψ2

2

]

...
...

...
cos

(
ψM
2

)
cos

(
3ψM

2

)
· · · cos

[
(M + 1

2 )ψM
2

]




T

. (21)

Here M = (N − 2)/2 for an even number of array elements N . In a similar way we can
now consider the case where N is an odd number of elements. For example, if N = 5, we
obtain from M = (N − 1)/2 that M = 2 and we also recall that the independent variable
is chosen to be a0 . The array factor (2) can be written as

f(ψk) = a0 + 2
n∑

m=1

am cos [mψk], (22)

so if we seek solutions for k = 1, and 2 for instance we obtain the expansions

f(ψ1) = a0 + 2a1 cos (ψ1) + 2a2 cos (2ψ1) (23)

and
f(ψ2) = a0 + 2a1 cos (ψ2) + 2a2 cos (2ψ2) . (24)

From (15) we find once again that (23) and (24) can be written as

2

(
cos (ψ1) cos (2ψ1)
cos (ψ2) cos (2ψ2)

)(
a1

a2

)
= −

(
a0

a0

)
, (25)

which finally gives the solutions
(
a1

a2

)
= −1

2
a0

(
cos (ψ1) cos (2ψ1)
cos (ψ2) cos (2ψ2)

)−1 (
1
1

)
. (26)

As we have done so before, we can now generalise for odd N by writing the generalised
form as 



a1

a2
...
aM




= −1
2
a0

[⇀

B
]−1




1
1
...
1



, (27)
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or in the vector-matrix form
⇀
a
T = −1

2
a0

[
⇀

B
T
]−1

⇀

I , (28)

where the matrix
⇀

B
T

becomes

⇀

B
T

=




cos (ψ1) cos (2ψ1) · · · cos (Mψ1)
cos (ψ2) cos (2ψ2) · · · cos (Mψ2)

...
...

...
cos (ψM ) cos (2ψM ) · · · cos (MψM )




T

. (29)

The solutions for am satisfy the array factor as given by (2) for an odd number of ele-
ments N . Table 1 shows the calculated amplitude coefficients for even and odd radiating
elements using the technique discussed above. Also, the method investigated so far hints
at the possibility of obtaining the amplitudes via a series. Indeed this is the case, such a
series solution is based on the work by Barbiere [5] but for large arrays there are conver-
gence problems. For small arrays it gives excellent results that allow comparison of the
amplitudes for an even or odd number of elements. We first define the variable z0 to be:

z0 =
1
2

[(
R+

√
R2 − 1

) 1
(M−1) +

(
R−

√
R2 − 1

) 1
(M−1)

]
, (30)

where R once again represents the ratio of the side lobe level. For an even number of
elements, M = N/2, and the amplitudes are given by

an =
M∑

q=n

(2M − 1)(q +M − 2)!
(q − n)!(q + n− 1)!(M − q)!

(−1)M−qz2q−1
0 . (31)

Alternatively, for an odd number of elements M = (N − 1)/2, and thus we obtain the
amplitudes by the series expansion,

an =
M−1∑

q=n

2M(q +M − 2)!
εn(q − n)!(q + n− 2)!(M − q + 1)!

(−1)M−q+1z
2(q−1)
0 , (32)

with the additional condition that εn is given by

εn =

{
2, n = 1
1, n 6= 1

(33)

such that n = 1, 2, 3, .... It is now a matter of expanding the even and odd solutions of the
array factors respectively,

AF (even) =
M∑

n=1

an cos [(2n− 1)u] (34)

and

AF (odd) =
M+1∑

n=1

an cos [(2n− 1)u], (35)
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Figure 3: Left Plot: The array factor as a function of u for |SLL| = −10 dB. The
curve in red represents N = 17 (odd) number of elements while the curve in blue is for
N = 20 (even). Right Plot: Polar plot for the parameters used on the left.

Figure 4: Left Plot: The array factor as a function of u for |SLL| = −10 dB. The
curve in red represents N = 11 (odd) number of elements while the curve in blue is for
N = 10 (even). Right Plot: Polar plot for the parameters used on the left.

Figure 5: Left Plot: The array factor as a function of u for |SLL| = −13 dB. The
curve in red represents N = 17 (odd) number of elements while the curve in blue is for
N = 20 (even). Right Plot: Polar plot for the parameters used on the left.
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Table 3: Polynomial approximation for the HPBW using the optimum spacing between
the radiating elements N for a broadside array. The left hand column represents the side
lobe ratio, while the right side column is the approximation to the half-power beamwidth in
degrees for any N = 3, ..., 20.

|SLL| (dB) HPBW (degrees)

-10
−2.97864 × 10−6N7 + 2.65506 × 10−4N6 − 9.89469 × 10−3N5

+0.199857N4 − 2.3685N3 + 16.5996N2 − 65.1958N + 120.406

-20
−3.06897 × 10−6N7 + 2.75572 × 10−4N6 − 1.03612 × 10−2N5

+0.211604N4 − 2.54401N3 + 18.1839N2 − 73.4929N + 141.942

-30
−2.50017 × 10−6N7 + 2.26546 × 10−4N6 − 8.61964 × 10−3N5

+0.17886N4 − 2.19797N3 + 16.2084N2 − 68.618N + 142.699

-40
1.199797 × 10−5N6 − 1.5909 × 10−3N5 + 5.18349 × 10−2N4

−0.889623N3 + 8.60381N2 − 46.0883N + 119.759

where we define u = πd
λ cos(θ), and d as being the separation between the radiating

elements. The results are exact to those obtained by the MC method and are thus both
displayed in Table 1. Since the variable u ∈ [−1, 1], corresponding to θ = 180 and 0
respectively, we can obtain the array factor. Generally, using this type of method, it
appears that an odd number of radiating elements give a broader beamwidth, but greater
’directivity’ or gain than an even number of elements. Interestingly, odd arrays can give
’better’ synthesis with less number of elements but the correct choice will also depend on
the requirements, eg, where the nulls appear. Figures 3-5 show the radiation pattern for
different N and SLL. An interesting result arises when we consider the behaviour of large
arrays as a function of the SLL. Figure 6 shows a plot of the ’average’ of the radiation
amplitudes < a > as a function of the array elements N , for a given SLL. In particular
for a -10 dB SLL3, we can investigate the contibutions of the average of the amplitudes
radiated by the array elements by the use of linear regression techniques. We define the
average < a > to be

< a >=
1
N

∑

i

ai, (36)

where ai are the individual amplitudes from each of the array elements and we consider a
linear fit to the data in order to obtain the expression

< a >= 1.00474 − 0.0406255N (37)

where N is the number of elements for both the even and odd cases. Equation (37) allows
us to solve for < a > if the number of radiating elements are given or alternatively if < a >
is given, we can obtain N . Clearly the linearity of (37) is a very inaccurate approximation
and a better fit to the data gives the result,

< a >= 1.40296 − 0.144412N + 0.00688N2 − 0.0001223N3 . (38)

Once again (38) allows us to solve for < a > or N , however when solving (38) for N , the
cubic equation can give a number of solutions, some of which will be imaginary. In order

3The SLL = −10dB example is used here in order to demonstrate the method. The same procedure
therefore applies for any SLL.
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Table 4: Polynomial approximation for the HPBW using the optimum spacing between
the radiating elements N for an endfire array. The left hand column represents the side
lobe ratio, while the right side column is the approximation to the half-power beamwidth in
degrees for any N = 3, ..., 20.

|SLL| (dB) HPBW (degrees)

-10
−2.69065 × 10−6N7 + 2.41777 × 10−4N6 − 9.10298 × 10−3N5+
0.186397N4 − 2.25303N3 + 16.3049N2 − 68.3012N + 160.484

-20
−2.3982 × 10−6N7 + 2.16965 × 10−4N6 − 8.24329 × 10−3N5

+0.170909N4 − 2.10251N3 + 15.613N2 − 68.0538N + 170.946

-30
−1.74512 × 10−6N7 + 1.59827 × 10−4N6 − 6.16729 × 10−3N5

+0.130493N4 − 1.65061N3 + 12.7594N2 − 59.163N + 165.512

-40
−1.07953 × 10−6N7 + 1.00824 × 10−4N6 − 3.98904 × 10−3N5

+8.71996 × 10−2N4 − 1.15209N3 + 9.45741N2 − 47.8277N + 153.68

0 5 10 15 20
N

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<
a
>

SLL=-10 dB

Figure 6: The solid curve is obtained from (38), while the points represent the number
of elements N for each average power < a >.
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to obtain the required solution, (37) is solved to obtain a value N0, such that when solving
(38) it is used as the initial guess or initial condition thereby improving considerably the
accuracy of (38). We can analyse other values of the side lobe ratio in a similar way.
Furthermore, the use of regression techniques means that the HPBW (in degrees) for both
broadside and endfire arrays can be obtained for a given SLL if any number N for the
elements is substituted. This is shown in Table 3 and Table 4 respectively.

3 The Power Aperture Product of a Weighted

Array

From previous results we have seen that generally an odd number of elements, while giving
a slightly broader beamwidth, has greater directivity (or gain) than an even number of
elements. Interestingly, when we consider such arrays in terms of aperture power and
efficiency relative to an unweighted array the opposite of what we expect occurs. For
instance as we will discuss below, the optimum efficiency of the array is greatest for an
even number of arrays even though we have a reduced gain as a result. Therefore the type
of performance we require will determine the kind of trade-offs we are prepared to accept
in antenna synthesis. The power aperture product of a weighted array is given by:

ParrayAarray =

[
N∑

i=1

ãt,iãr,i

]2

PelementAelement (39)

where we define Parray as the average power of the array, Aarray as the effective area of the
array, Pelement as the average power of the unweighted element (assumed identical across
the array), Gelement as the gain of the unweighted element (assumed identical across the
array), ãt,i are the normalised amplitude weights applied on transmission to element i,
ãr,i are the normalised amplitude weights applied on reception to element i. Where the
element normalisation is such that max(ãi) = 1, it reflects the practical issue that the
antenna weighting is normally achieved by attenuating an element. For an unweighted
antenna ãt,i = 1 and ãr,i = 1, reducing the previous result to the well known

ParrayAarray = N2PelementAelement (40)

The relative efficiency of the weighted antenna to the unweighted antenna is then given
by:

ε =
1
N2

[
N∑

i=1

ãt,iãr,i

]2
PelementGelement
PelementGelement

=
1
N2

[
N∑

i=1

ãt,iãr,i

]2

(41)

We firstly consider the performance of arrays with Chebyshev weighting applied only once,
so that either ãt,i = 1 or ãr,i = 1. Figures 7-9 show the power aperture product and the
efficiency of the single weighted array for differing numbers of elements. Each of the Figures
differ by the maximum number of elements shown in order to highlight the bahaviour of the
arrays as the number of elements increases. What is apparent from the Figures is that for
any given weighting the total power aperture product increases as the number of elements
is increased, but that beyond a certain critical number of elements the power aperture rate
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Figure 7: Left Plot: The total transmitted aperture power is shown vs a relatively small
number of array elements N at different sidelobe levels. Right Plot: The efficiency of
the aperture power of arrays is shown vs the number of elements.

of increase is sharply reduced, and the overall power aperture efficiency sharply declines.
The reason for this decrease is due to the fact that the Chebyshev weights must transfer
power from the main lobe to the sidelobes in order to maintain the required sidelobe ratio.

We will now consider if for a given two way side lobe level it is more efficient to weight both
transmission and reception or just one (usually reception because of interference rejection
considerations). Figure 10 shows the total power aperture product for two cases. In the
first case, 20dB Chebyshev weighting is applied to both transmission and reception, and in
the second case 40dB Chebyshev weighting is applied to the reception signal only. Figure
10 broadly shows that for small arrays it is better to apply weights on both transmission
and reception, but for larger arrays it is more efficient to apply Chebyshev weights to
reception only4.

4 The Impact on the Signal to Noise Ratio of a

Weighted Array

Whilst the signal levels are impacted by the weighting function applied, so are the noise
levels (at least on receive), and so we must consider the overall impact on the resultant
signal to noise ratio (SNR).

If we assume that the noise at each receiver is independent and of the same mean power
level, then the expected value of the total noise after weighting will be:

4For the very smallest arrays there may be a reversal of this result, as shown in Figure 10
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Figure 8: Left Plot: The total transmitted aperture power is shown vs N = 100 array
elements at different sidelobe levels. Right Plot: The efficiency of the aperture power of
the arrays is shown vs the number of elements.
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Figure 9: Left Plot: The total transmitted aperture power is shown vs a relatively large
number of array elements at different sidelobe levels. Right Plot: The efficiency of the
aperture power of the arrays is shown vs the number of elements.

14



DSTO–TR–1806

5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Efficiency vs number of elements

N

ef
fic

ie
nc

y

Tx is unweighted while Rx has SLL=−40 dB

Tx and Rx have SLL=−20 dB

Figure 10: Left Plot: The total transmitted aperture power is shown vs the number of
elements at different sidelobe levels for a two-way transmit and receive SLL. Comparison
is made of the power for an unweighted transmition but weighted reception of SLL=-40 dB
to that of a transmit and receive mode of SLL=-20 dB. Right Plot: The efficiency of the
aperture power of the arrays is shown vs the number of elements.

narray =

[
N∑

i=1

ã2
r,i

]
nelement (42)

where narray is the average noise power of the array, nelement is the average noise power
of the unweighted element (assumed identical across the array), ãr,i are the normalised
amplitude weights applied on reception to element i. The signal to noise ratio is:

(SNR)weighted =
Parray
Narray

=

[
N∑
i=1

ãt,iãr,i

]2

[
N∑
i=1

ã2
r,i

] (SNR)element (43)

where

(SNR)element =
Pelement
nelement

(44)

An array that is unweighted on both transmit and receive gives:

(SNR)un−weighted = N(SNR)element (45)
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Figure 11: Impact upon SNR of Chebyshev weights applied on reception only.

Hence the impact upon the SNR of weighting the antenna is given by:

(SNR)weighted
(SNR)un−weighted

=

[
N∑
i=1

ãt,iãr,i

]2

N

[
N∑
i=1

ã2
r,i

] (46)

or

(SNR)weighted =

[
N∑
i=1

ãt,iãr,i

]2

N

[
N∑
i=1

ã2
r,i

] (SNR)un−weighted (47)

The impact of applying Chebyschev weights only on receive (that is ãt,i = 1) on the system
SNR is shown in Figure 11, with the loss in signal to noise again becoming significant once
the natural side lobe levels are lower than the Chebyschev adjusted level. The losses
shown here broadly match those reported in the literature-see for example Nathanson [7]
provided the array is sufficiently small, otherwise the literature understates the losses that
are experienced.

Using weights on both transmission and reception has a far more profound impact upon
system SNR, as shown in Figure 12, with a significant loss in SNR resulting from the loss
in power aperture efficiency on transmit dominating the overall SNR performance. This
remains the case where the overall weighting appears nominally equal to the receive only
case shown in Figure 13.
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Figure 12: Impact upon SNR of Chebyshev weights applied both on transmit and recep-
tion.
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Figure 13: Impact upon SNR of Chebyshev weights applied on transmit and reception
compared with reception only.
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Figure 14: The optimised spacing plotted against the number of elements for an X-
Band (λ = 0.03 m) array. The curves starting from the bottom to the top correspond to
|SLL| = −10,−20,−30 and −40 dB’s respectively.

5 Investigation of Beamwidth, Side Lobe Level

and the Number of Elements

Another important parameter of interest that we will look at is the beamwidth. We
consider θ = θH such that it corresponds to the half-power point on the main beam of
the array pattern with the appropriate phase factor α chosen according to whether we
have broadside or endfire arrays. There are two half-power points for a broadside array
(α = 0), one exists on the left and the other on the right side of θ = π/2 respectively. For
the case θH < π/2, the half-power beamwidth for broadside arrays is HPBW = π− 2θH .
On the other hand, for endfire arrays (α = ±βd), there exists only one solution for θH
so that HPBW = θH when α = −βd and HPBW = π − θ when α = +βd. Here we
will consider α = −βd for the endfire case without loss of generality [3], and note that for
d = λ/2, θH = HPBW/2. We define ψ = ψH at θ = θH , so that for the broadside case
ψH = βd cos(θH), and for the endfire case ψH = βd [cos(θH) − 1]. From (3) we have

ψ̄H = 2 cosh−1
[
γ cos

(
ψH
2

)]
. (48)

We recall that the array factor assumes its maximum value at ψ̄ = ψ̄0, so that from
equations (3), (5) and (6) after combining we obtain

cos
(
ψH
2

)
cosh

[
1

N − 1
cosh−1(R)

]
− cosh

[
1

N − 1
cosh−1(

√
2

2
R)

]
= 0. (49)

Equation (49) gives the relationship between the half-power beamwidth, side lobe level
and the number of elements. More specifically if two of these are given, the third one can
be calculated. Thus, for the case where N and HPBW are given, we can determine R.
As can be seen from (49) however, the equation involves transcendental functions and so
the solution for R needs to be found numerically. Any number of solutions can satisfy
(49) so that in order to pick the correct solution we must firstly guess a ’root’ as an initial
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Figure 15: The optimised spacing plotted against the number of ele-
ments for an L-Band (λ = 0.25 m) array on the left and an S-Band
(λ = 0.1 m) array on the right. The curves starting from the bottom to
the top correspond to |SLL| = −10,−20,−30 and −40 dB’s respectively.

condition before proceeding. This means that (49) needs to be used with caution. For
example, if we want to find the number of elements N for a given R and HPBW , we
find that N is a non-integer number which physically is impractical. The correct solution
would be

N = int {N0} + 1, (50)

where int {N0} means the integer part of the solution N0 obtained numerically from (49).
To further highlight the method, we consider an endfire array with |SLL| = −20 dB and
a half-power beamwidth of 22.50. By the use of (49) we find the numerical solution to be
N0 = 13.596 but because of (50) and the fact that we need to have HPBW ≤ 22.500, the
actual solution is N = 14. The beamwidth is obtained from

HPBW = π − 2 cos−1
(
ψH
βd

)
for broadside (51)

and
HPBW = cos−1

(
1 − ψH

βd

)
for end − fire, (52)

where from (49) we transpose to get

ψH = 2 cos−1





cosh
[

1
N−1 cosh−1( R√

2
)
]

cosh
[

1
N−1 cosh−1(R)

]



 . (53)

For endfire arrays where the inter-element spacing is d = λ/2, we multiply the right-hand
side of (52) by the factor 2. Figures 14-15 show results for frequency bands of interest.
For selected SLL, the optimum configuration is obtained by the given optimum element
separation and number of elements. In fact all variables can be calculated simultaneously
by looking at the graphs, ie, if we require the optimum performance for the array then for
a selected optimum element separation we read off the corresponding number of elements
and SLL and so on. Similarly, the variation of the HPBW (in degrees) as obtained for
optimum element separation and λ/2 separation for both broadside and endfire arrays is
shown in Figures 16-20.
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6 Optimising the Inter-Element Separation

We are interested in obtaining the distance between the elements, d, such that for a
specified SLL and given number of elements the smallest beamwidth can be achieved.
This means ’packing’ as many side lobes as possible within the radiation pattern of the
array. In fact by doing so, the visible range in the ψ̄ domain, which corresponds to the
range 0 ≤ θ ≥ π, is determined in such a way as to include all side lobes on both sides of
the main beam for broadside arrays and on one side of it for endfire arrays. A portion of
the grating lobe which will produce a side lobe with a magnitude equal to the specified
SLL is also included. The cutoff point on the grating lobe satisfies the relation [3]:

cosh
[
(N − 1)

2
ψ̄

]
=
∣∣∣∣cos

[
(N − 1)

2
ψ̄

]∣∣∣∣ , (54)

that is valid only if ψ̄ = 0. The solution of ψ which corresponds to the grating lobe
lies in the range π < ψ < 2π. In this range however, cos(ψ/2) < 0 and (4) should be
modified as −γ cos(ψ/2) = cos(ψ̄/2). If we put ψ̄ = 0 in the previous expression we obtain
ψ = 2π − 2 cos−1(1/γ). For broadside arrays, ψ should correspond to θ = 0, that is when
ψ = βdopt, where dopt is the optimum spacing between the elements. As a result we have

dopt = λ

[
1 −

cos−1( 1
γ )

π

]
broadside. (55)

In the case of endfire arrays with the main beam in the θ = π direction, ψ should corre-
spond to θ = 0, in other words ψ = 2βdopt, resulting in

dopt =
λ

2

[
1 −

cos−1( 1
γ )

π

]
end− fire. (56)

Equation (56) is also valid for endfire arrays with the main beam in the θ = 0, (α = −βd),
direction. Optimisation of the element spacing d for endfire arrays has also been studied
for the case α 6= ±βd, see [6].

7 Directivity

In this section we will consider the directivity of arrays with arbitrary spacing between
the radiating elements. Stegen [7] has investigated the case when the elements have a
spacing that is an integer multiple of half a wavelength. Approximations have also been
obtained for the directivity of a large number of elements [8]. The more interesting case
of an analytical representation for the directivity in the general case of arbitrary element
spacing and arbitrary number of elements is very useful [9]. In what follows, we will obtain
the results that allow us to calculate the directivity of arrays as a function of the number
of elements, element spacing, and side lobe level. The results are particularly useful when
the number of elements are not large and the element spacing is not an integer multiple
of half a wavelength. We begin by recalling the form of the array factor for a Chebyshev
array which consists of N equally spaced isotropic elements,

20



DSTO–TR–1806

Figure 16: Comparison of the half-power beamwidth (HPBW ) for a
broadside array (left) and an endfire array (right) with optimum spacing
between the elements. The dashed curve’s side lobe ratio is -10 dB, while
the solid curve is that for a -40 dB side lobe ratio.

f(ψ) =
1
R

cos
[
(N − 1) cos−1(γ cos

(
ψ

2

)
)
]
, (57)

when |f(ψ)| ≤ 1/R, and

f(ψ) =
1
R

cosh
[
(N − 1) cosh−1(γ cos

(
ψ

2

)
)
]
, (58)

when |f(ψ)| ≥ 1/R. As before, ψ = βd cos θ + α, d is the element spacing, α is the inter-
element phase shift, β = 2π/λ, λ is the wavelength and θ is the angle measured from the
line that is perpendicular to the array. Here R is the beam maximum to side lobe level
ratio and γ = cosh

[
ln(R+

√
R2 − 1)/(N − 1)

]
. The expression for the directivity can be

obtained from many publications, for example see [10], and is generally denoted as:

D = 4π
π∫
0

2π∫
0

f2(θ) sin(θ)dθdφ

= 4πd/λ
α+βd∫

α−βd

f2(ψ)dψ

.
(59)

In order to evaluate the integral in the denominator of (59), we notice that the expres-
sion f(ψ) as given by (57) or (58) can be expanded as a series in cos(nx) or cosh(nx)
respectively. By collecting terms we arrive at the result for f2(ψ):

f2(ψ) =
1

4R2

[
2 + χ2M

0 + 2M
M∑

i=1

(−1)i
(

1
i

)(
2M − i− 1

i− 1

)
χ

2(M−i)
0

]
, (60)

where M = N − 1 and χ0 = 2γ cos(ψ/2). By substituting (60) into (59) and using the
identity,

∫
cos2n(x)dx = 2−2n

(
2n
n

)
x+ 21−2n

n−1∑

k=0

(
2n
k

)
sin [(2n− 2k)x]

(2n− 2k)
(61)

we obtain the directivity D as

D =
4R2

τ
(62)
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Figure 17: The half-power beamwidth (HPBW ) in degrees plotted against the number
of elements for a broadside array (left) and an endfire array (right). The dashed curve
represents an array spacing of λ/2 while the solid curve is the optimised spacing. The
magnitude of the side lobe level is -10 dB.

Figure 18: The half-power beamwidth (HPBW ) in degrees plotted against the number
of elements for a broadside array (left) and an endfire array (right). The dashed curve
represents an array spacing of λ/2 while the solid curve is the optimised spacing. The
magnitude of the side lobe level is -20 dB.

Figure 19: The half-power beamwidth (HPBW ) in degrees plotted against the number
of elements for a broadside array (left) and an endfire array (right). The dashed curve
represents an array spacing of λ/2 while the solid curve is the optimised spacing. The
magnitude of the side lobe level is -30 dB.
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Figure 20: The half-power beamwidth (HPBW ) in degrees plotted
against the number of elements for a broadside array (left) and an end-
fire array (right). The dashed curve represents an array spacing of λ/2
while the solid curve is the optimised spacing. The magnitude of the side
lobe level is -40 dB.

where

τ = 2 + h(0) + 2M
M∑

i=1

(−1)i
(

1
i

)(
2M − i− 1

i− 1

)
h(i) (63)

and

h(i) = γ2(M−i)
[(

2M − 2i
M − i

)
+ 2

M−i−1∑

k=0

(
2M − 2i

k

)
ζ(i, k)

]
(64)

while
ζ(i, k) =

1
βd

sin [(M − i− k)βd] cos [(M − i− k)α]
(M − i− k)

. (65)

Equation (64) can be simplified further if we consider a broadside array (α = 0) or endfire
array (α = ±βd) so that for both of these cases we have

ζ(i, k) =
sin [ν(M − i− k)βd]
νβd(M − i− k)

, (66)

where
ν = 1 broadside
ν = 2 end− fire.

(67)

Calculations show that for the same number of elements and side lobe level, the directivity
of a broadside array with arbitrary element spacing d, is related to the directivity of an
endfire array with an element spacing of d/2, ie, (see Fig 21)

Dbroadside(d) = Dend−fire(d/2). (68)

Furthermore, when d is a multiple integer of λ/2 and βd = mπ, where m is an integer, we
find that ζ(i, k) = 0. For this latter case, τ in (62) becomes:

τ = 2 + γ2M

[(
2M
M

)
+ 2M

M∑

i=1

(−1)i
(
γ−2i

i

)(
2M − i− 1

i− 1

)(
2M − 2i
M − i

)]
. (69)

Thus we find that when d = λ/2, the directivity of broadside and endfire arrays is
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Figure 21: The relation between the SLL, the ratio of the optimum
spacing to the wavelength (dopt/λ) and the number of elements N . The
plot on the left is for a broadside array while the plot on the right is
for an endfire array.

Figure 22: Plots of the directivity D against the ratio d/λ for a broad-
side array (the endfire case differs by a factor of 1/2). The number of
elements that have been chosen are N = 3, 7, 12, 16, 19 and 20, where
N = 3 is the lowest curve and N = 20 is the highest in each plot. The
side lobe level is: -10 dB for the left plot and -20 dB for the right
plot.
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Figure 23: Plots of the directivity D against the ratio d/λ for a broad-
side array (the endfire case differs by a factor of 1/2). The number of
elements that have been chosen are N = 3, 7, 12, 16, 19 and 20, where
N = 3 is the lowest curve and N = 20 is the highest in each plot. The
side lobe level is: -30 dB for the left plot and -40 dB for the right
plot.

equivalent. For a specified number of elements N , side lobe level and element spacing d/λ,
we can apply (62)-(65) to calculate the directivity. On the other hand if d is a integer
multiple of λ/2, we can use the expression for τ as given by (69). Figures (22-23) show
plots of the directivity against the ratio d/λ for broadside arrays with the endfire curves
differing only by a factor of 1/2. From the graphs we can see that the curves ’peak’ for given
values of the ratio d/λ. The element spacing d (in d/λ) corresponding to the maximum
of the directivity is not equal to the optimum spacing, ie, d 6= dopt. In other words, we
find that minimum beamwidth and maximum directivity do not occur simultaneously.
The results presented here are very useful when we are dealing with situations where the
element spacing is different from integral multiples of half a wavelength and the number
of elements is not too large.

8 Conclusion

We have studied arrays based on a modification of conventional Chebyshev arrays. Cheby-
shev arrays have the property that the side lobe levels are the same but are hindered by the
fact that the directivity ’saturates’, especially as the number of elements increases. The
MC method also has the same side lobe levels but the directivity is vastly improved even
when using the same parameters as for the conventional Chebyshev method. The higher
directivity in the MC method is achieved by finding the zeros of conventional Chebyshev
arrays repeatedly. However the maximum directivity is achieved when the spacing between
the elements is slightly smaller than the optimum element spacing in the case of the MC
method. The 3 dB beamwidth narrows or broadens depending on the number of elements
chosen with pronounced differences if even or odd elements are chosen. All parameters for
such arrays have been studied and comparisons have also been made between broadside
and endfire arrays.
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